Stability of rarefaction for stochastic viscous conservation law


主讲人:董昭 中科院数学与系统科学研究院研究员


地点:Tencent会议 609 305 268


主讲人先容:1996年博士毕业于中科院应用数学研究所。主要从事狄氏型与马氏过程随机过程、随机微分方程理论研究,特别是在随机流体力学方程和多遍历态的随机动力系统有比较深入的研究。 在国际期刊发表论文50余篇。主持国家自然科学基金委重点项目一项、重大子项目一项、主持科技部国家重点研发计划资助子项目一项,参加重点和面上多项,和他人合作获得教育部自然科学二等奖。任北京航空航天大学兼职博导,中国科学院大学岗位教授。

内容先容:It was proved in [9] that the rarefaction wave for the stochastic Burgers equation with transport noise [14] is time- asymptotically stable. This paper is concerned with more general flux, viscosity and conservative noise. By manipulating the weakly monotone methods, we prove the global well-possedness of strong solutions for general H^1 initial data. Furthermore, we show that the rarefaction wave is still time-asymptotically stable for general stochastic viscous conservation laws with L^p time. This is the joint work with Fei min Huang and Houqi Su.

XML 地图 | Sitemap 地图